At Wolfram|Alpha, our mission is to make all the world’s systematic knowledge available, accessible, and computable.
The number-one priority of our new Managing Director, Barak Berkowitz, is to get Wolfram|Alpha in the hands of everyone. It’s all about ubiquity. This is an exciting time.
To date, we’ve focused on improving the Wolfram|Alpha experience, refining the processes we use to incorporate new information into the system, experimenting with Wolfram|Alpha on mobile devices, and solidifying programmatic access through the API.
As we approach the anniversary of the launch of Wolfram|Alpha, we’ll be moving into Wolfram|Alpha’s next phase, centered on growth—increasing the exposure and use of Wolfram|Alpha both by individuals seeking knowledge and by developers building computational knowledge into their applications in interesting ways. We want Wolfram|Alpha to become ubiquitous.
The first step in this process is to improve Wolfram|Alpha’s accessibility on smartphones and other mobile devices that are increasingly an integral part of one’s online experience. Today we’re launching the mobile Wolfram|Alpha website, http://m.wolframalpha.com. The new mobile website is a big step forward from the landing page it replaces, having been engineered from the ground up for the new generation of touch-screen smartphones while enabling access to Wolfram|Alpha from earlier handheld devices that have difficulty with the main website.
In addition to the mobile website, we’ve changed the price of the Wolfram|Alpha App for the iPhone and iPod touch to $1.99, down from $49.99.
Many, if not most, of our mobile customers tell us that the app is their preferred way of using Wolfram|Alpha. However, if you happen to be one of the few early adopters who aren’t happy with the app, you can request a refund.
Over the next few weeks and months, we will make a series of announcements that continue the push toward our ultimate goal—putting Wolfram|Alpha everywhere. As we enter the age of ubiquity for Wolfram|Alpha, we look forward to seeing and hearing how you make use of computational knowledge in your life.
The Wolfram|Alpha Community Forum has moved to the Wolfram Community. Sign up today for interesting discussions about Wolfram|Alpha and more!
The Wolfram|Alpha Community is the hub for conversation about using Wolfram|Alpha in areas such as education, mathematics, astronomy, chemistry, engineering, and a wide variety of other subjects. You can also share your thoughts with other users and the Wolfram|Alpha Team in the Ideas & Suggestions, Bugs, and How-To forums.
Today we’re releasing the first issue of the Wolfram|Alpha Community Newsletter to keep you connected and up to speed with the latest news and discussions surrounding the world’s first computational knowledge engine.
If you’re already a member of the Wolfram|Alpha Community, you can look forward to receiving a weekly digest highlighting the hottest member-generated topics, news updates from the Wolfram|Alpha Blog, the Community’s top contributors and newest members, and much more. We would like to thank the active members who have made the Community what it is today, and invite you to join it if you haven’t already done so!
“One of the very nicest things about life is the way we must regularly stop whatever it is we are doing and devote our attention to eating,” said Luciano Pavarotti. Let’s stop whatever we’re doing now to devote our attention to data on eating, as a kind of food for thought.
Wolfram|Alpha now has food supply estimates from the Food and Agriculture Organization of the United Nations, covering more than fifty foods spanning over forty years for countries all over the world. Let’s visit three countries to see what we can find.
First stop, the Caribbean. Type in “cuba wheat” and you’ll see a dramatic downturn in the early 1990s, following the demise of the Soviet Union (Cuba’s most important trading partner).
Now let’s go over to the Korean peninsula. Let’s check out South Korea’s coffee versus tea consumption.You’ll see that coffee intake has increased by several factors since 1970, as the country has become increasingly westernized, while tea consumption has gone up just a little:
Final stop, North America. In contrast to South Korea, we can see a slow decline in per capita coffee consumption in the United States; according to the United States Department of Agriculture (USDA), increased availability of carbonated soft drinks may be one cause of the downturn. More »
Exciting new math features have arrived in Wolfram|Alpha! Our programmers have spent the past two months developing new capabilities in optimization, probability, number theory, and a host of other mathematical disciplines. Searching for elusive extrema? Look no further! Just feed your function(s) into Wolfram|Alpha and ask for their maxima, minima, or both. You can find global maxima and minima, optimize a function subject to constraints, or simply hunt for local extrema.
We’ve also added support for a wide variety of combinatorics and probability queries. Counting combinations and generating binomial coefficients has been simplified with syntax like 30 choose 18. Want to spend less time crunching numbers and more time practicing your poker face? You can ask directly for the probability of a full house or other common hands, as well as the probabilities of various outcomes when you play Powerball, roll two 12-sided dice, or repeat any sequence of trials with a 20% chance 4 times.
The pursuit of primes has never been so simple. Imagine yourself walking the streets of an infinite city in search of “prime real estate.” You can find the nearest one simply by requesting (for example) the prime closest to 100854; alternatively, you could scope out the entire neighborhood by asking Wolfram|Alpha to list primes between 100,000 and 101,000. Would you prefer the greatest prime number with 10 digits, or will you be satisfied with any random prime between 100,000,000 and 200,000,000? The aspiring real estate agent—er, number theoretician—can also tinker with quantities like the sum of the first hundred primes or the product of primes between 900 and 1000. If your explorations take you to the realm of the composites (the addresses of houses with “sub-prime” mortgages, perhaps), you can identify numbers with shared factors by querying Wolfram|Alpha for, say, multiples of 5, 17, 21.
Other additions have brought everything from Archimedes’ axiom to semiaxes and square pyramid syntax into our body of computable knowledge and functions. Wolfram|Alpha grows daily, so stay tuned to this blog for further updates. Better yet, apply to become a Wolfram|Alpha tester for privileged access to the newest features before they go public!
A movement is underway in the United States to reintroduce schools and families to freshly prepared meals. Last month, First Lady Michelle Obama introduced the “Let’s Move” campaign, an effort to raise awareness of and access to fresh food in schools and in our communities. The goal of the campaign is to eliminate childhood obesity within a generation. This Friday, Chef Jamie Oliver’s new television show Food Revolution will take us inside a few of America’s school cafeterias and classrooms in an effort to fulfill his wish to teach every child about food.
Wolfram|Alpha is already being used as a learning tool in schools to tackle subject areas such as math, science, social studies, and more. But did you know that Wolfram|Alpha contains a number of tools to help schools and families successfully start their own nutrition and wellness revolutions?
Imagine if students had the opportunity to compare the nutritional values of lunch options and make informed decisions before ever hitting the cafeteria. For example, students can go online to Wolfram|Alpha and compare grilled chicken breast to a corn dog. Wolfram|Alpha provides them with a nutrition label for each item, and shows a side-by-side comparison of nutritional values such as fats, proteins, and vitamins in each food option. Click the image below to see the full results.
Steven Strogatz, a professor of applied mathematics at Cornell University, is currently blogging for The New York Times about issues “from the basics of math to the baffling”. It’s been a fascinating series, starting with preschool math and progressing through subtraction, division, complex numbers, and more. As Wolfram|Alpha is such a powerful tool for working with mathematical concepts, we thought it’d be fun to show how to use it to explore some of the topics in Strogatz’s blog.
First up is Strogatz’s post on “Finding Your Roots”. For a brief introduction to Wolfram|Alpha’s ability to find roots, try “root of 4x+2”.
Here we found the one and only root of 4x+2, but what if there is more than one root? Not a problem for Wolfram|Alpha—try “4x^2 + 3x – 4”. More »
Today when you hear about global warming, the first thing that comes to mind is probably carbon dioxide; however, there are many greenhouse gases that may contribute to this phenomenon. Wolfram|Alpha now provides information on the relative global warming effects of about 30 common pollutants in the atmosphere using the global warming potential (GWP) index.
The GWP index estimates how much a certain chemical will add to global warming compared to the same mass of carbon dioxide over a certain time span. The data Wolfram|Alpha uses is from the 2007 report of the Intergovernmental Panel on Climate Change (IPCC).
Let’s take a look at some of this data by asking Wolfram|Alpha about the “gwp of methane”. Here you are able to see three different time horizons for methane: 20 years, 100 years, and 500 years. These different time horizons allow you to see the short-term and long-term contributions that methane will make to global warming in the atmosphere. You may also notice that as the time horizon gets larger, the GWP actually decreases—which seems counterintuitive, but makes sense as soon as you see that methane has an atmospheric lifetime of about 12 years. This is a fairly short lifetime, so methane’s effect on global warming declines as the time horizon increases. A simple click on the “Show comparisons” button pulls up a comparison of methane’s GWP to those of other greenhouse gases. You can also adjust the time horizons to see how methane compares to other greenhouse gases in the short and long term.
GWP values can also be compared for multiple greenhouse gases. For example, an input of “gwp of methane and carbon tetrachloride” provides a comparison of the two gases. The first pod displays the time horizons of both chemicals so you are able to see that carbon tetrachloride contributes much more to global warming than does methane. Moving down to the next pod, it may become more obvious why carbon tetrachloride contributes more: it has an atmospheric lifetime of 26 years, more than twice as long as methane’s.
We are currently working to add a greater variety of climate change and global warming data to Wolfram|Alpha. We encourage you to submit feedback on this feature, as well as any suggestions or ideas you may have.
It’s said that everything big happens in Texas! And on Sunday night, Wolfram|Alpha won big at the 13th Annual SXSW Web Interactive Awards in Austin, Texas. Our first win of the night was in the Technical Achievement category, which is awarded to “sites that are re-inventing and re-defining the technical parameters of our online experience”. We were pleasantly surprised to also receive the Best of Show award.
We are grateful for the support shown by our users and members of the technology community this past year, and we can’t wait to share all of the big things Wolfram|Alpha has in store!
In my blog post last month, I wrote about Valentine’s Day in Wolfram|Alpha. Strangely, we received a number of comments indicating that the computational power of Wolfram|Alpha was not always sufficient to melt the hearts of some non-mathematically inclined sweethearts of the world. But not to fear; I have decided to persist undeterred in spite of that disappointing and surprising news, now that we’re on the verge of another holiday (and a more inherently mathematical one).
The holiday in question is Pi Day. As with a large number of other holidays, simply typing its name (in this case, “pi day”) into Wolfram|Alpha gives you basic calendrical information about it:
Now, because Wolfram|Alpha users are both intelligent and discriminating, all of you have I’m sure already noticed that when the digits in the date 3/14 (March 14 in the United States style for dates—a bit more about this later) are run together with a decimal place between, the result is 3.14. And that that decimal expansion is connected with a certain famous mathematical constant given by the ratio of the circumference of a circle to its diameter. And that little fact explains why Pi Day is celebrated on the 14th of each March. More »
Since Wolfram|Alpha‘s launch in May 2009, one of its most talked-about features has been its ability to compute specific answers to questions about math, chemistry, economics, demographics, and much more. But as its knowledge base continues to grow, it’s also able to highlight interesting and useful connections between data sets, and to reveal information that you might not think to ask for on your own.
One of the coolest examples of this is our recently enhanced relocation calculator. For several months, we’ve been able to answer simple questions about the relative cost of living in various United States cities and metropolitan areas. If you told Wolfram|Alpha that you were relocating from Seattle to Miami with a salary of $35000, you’d get a comparison of the relative cost of groceries, housing, and other expenses in each city, plus an estimate of the salary required to maintain a comparable standard of living in your destination city. On its own, this is a useful little calculator—but it’s also something that dozens of other websites could do.
But because Wolfram|Alpha knows tons of other details about any given city, our relocation calculator can now do things that no other site can. In addition to salary and cost-of-living comparisons, you now get comparisons of each city’s population, median home sale prices, unemployment rates, crime rates, sales taxes, traffic congestion, and climate—a useful sampling of current and historical comparative data for anyone contemplating a move.
We’ll highlight similar enhancements as they are released. And as always, we welcome your suggestions for new data, or new ways of looking at existing data, in any domain covered by Wolfram|Alpha.
We’ve been working diligently for several years to build a vast repository of genetic data into Wolfram|Alpha. At launch time, we had the entire human genome and all known human genes. Now, Wolfram|Alpha has genetic data for 11 different species, from humans and mice to fruit flies and worms. And we’re working hard to get more species in all the time.
These days we’re hearing more and more about how particular genes work, what their functions are, and what happens if a gene becomes mutated and stops functioning correctly. And with the personal genomics movement in full swing, we can even get portions of our own genomes sequenced, with a report detailing for us which gene variants we have and whether any put us at known high risk for diseases like breast cancer, diabetes, or Parkinson’s disease.
Well, Wolfram|Alpha makes it really easy to get in-depth information about a gene that interests you.
Take for example the gene SATB1, which recent studies have shown is an important factor in breast cancer growth. Wolfram|Alpha gives you a number of results about this gene. The first information is the standard and alternate names the gene goes by, which are important if you want to look it up in the literature:
After that, Wolfram|Alpha tells us that this gene is on chromosome 3, locus p23, on the minus strand, starting at around 18 megabases along the chromosome. There is then a snippet of the gene’s actual DNA sequence, and we learn that the gene is about 90 kilobases (90,000 base pairs) long, with a picture showing which other genes are close by on the chromosome (in this case, PP1P and KCNH8):
With the 2010 Academy Awards coming up this Sunday, we’re happy to announce that Wolfram|Alpha is now able to answer questions about every Oscar nomination and award since the first ceremony in 1929. You might be surprised by some of the things you see in the earliest lists: yes, acting awards were bestowed for multiple performances in a given year; the Academy made a distinction between movies that were merely “unique and artistic” and those that were truly “outstanding”; and like the current Golden Globes (we’ll tackle them soon), separate awards were given for dramatic and comedic films.
You can dive into this data in practically any way you want. Curious about a particular film? Try “Academy Award nominations for Forrest Gump“. Or maybe you’re curious about the past performance of a perennial front-row Oscar celebrity?
Ask about a specific award, like “best actor oscars“, and you’ll get a historical list of all winners for that category. But ask about “best actor in 2004“, and Wolfram|Alpha will serve up a detailed cross-section of data relevant to that award—the winner, other nominees, and other Oscar nominations and awards for both the winner and the film he appeared in. More »
Catch Conrad Wolfram, Wolfram Research’s Director of Strategic Development, this Friday, March 5, from noon–1pm CET, live from CeBIT in Hannover, Germany. Conrad is participating in the “Webciety—Connecting Work & Life” panel discussion with featured guests Anand Agarawala (bumptop.com), Peter Berger (Suite101.com), Kevin Eyres (LinkedIn), and Ralf Gerbershagen (Motorola GmbH). The panel will discuss the impact that Web 2.0 and social networks have had on everyday life.
If you’re unable to attend CeBIT, the digital industry’s largest trade show, you can watch the live broadcast of the panel discussion.
Saturday’s massive 8.8-magnitude earthquake in Chile has captured the attention and concern of the world community. The area continues to be plagued by dozens of smaller quakes including at least nine of magnitude 6.0 or higher.
Below is a timeline of earthquake activity in Chile over the last 72 hours. Wolfram|Alpha‘s earthquake data is updated every six minutes with information reported by the United States Geological Survey (USGS). The USGS reports activity within 30 minutes of most seismic events worldwide.
In addition to the map and timeline, the output shows the top three earthquakes (ranked in decreasing order of magnitude) within the past 72 hours, and clicking the “More” button will pull up information on the lower-magnitude shocks. Furthermore, you can see exact coordinates by clicking the “Show coordinates” button.
If you’re monitoring quake activity in Chile or other parts of the world, you will find Wolfram|Alpha useful for exploring a single event or series of events by time, location, and magnitude.
(The image below reflects activity within the 72 hours before this post was written; click the image for current information and further exploration.)