The Wolfram|Alpha Blog is now part of the Wolfram Blog. Join us there for the latest on Wolfram|Alpha and other Wolfram offerings »
AUTHOR PAGE
paul-jean-letourneau
Paul-Jean Letourneau
Blog Posts from this author:
March 10, 2010– 8

We’ve been working diligently for several years to build a vast repository of genetic data into Wolfram|Alpha. At launch time, we had the entire human genome and all known human genes. Now, Wolfram|Alpha has genetic data for 11 different species, from humans and mice to fruit flies and worms. And we’re working hard to get more species in all the time.

These days we’re hearing more and more about how particular genes work, what their functions are, and what happens if a gene becomes mutated and stops functioning correctly. And with the personal genomics movement in full swing, we can even get portions of our own genomes sequenced, with a report detailing for us which gene variants we have and whether any put us at known high risk for diseases like breast cancer, diabetes, or Parkinson’s disease.

Well, Wolfram|Alpha makes it really easy to get in-depth information about a gene that interests you.

Take for example the gene SATB1, which recent studies have shown is an important factor in breast cancer growth. Wolfram|Alpha gives you a number of results about this gene. The first information is the standard and alternate names the gene goes by, which are important if you want to look it up in the literature:

Wolfram|Alpha's results for the gene SATB1

After that, Wolfram|Alpha tells us that this gene is on chromosome 3, locus p23, on the minus strand, starting at around 18 megabases along the chromosome. There is then a snippet of the gene’s actual DNA sequence, and we learn that the gene is about 90 kilobases (90,000 base pairs) long, with a picture showing which other genes are close by on the chromosome (in this case, PP1P and KCNH8):

More of Wolfram|Alpha's data for the gene SATB1

More »