AUTHOR PAGE
ghurst
Greg Hurst
Blog Posts from this author:
February 3, 2014– 3

As the winter term kicks into gear, you might start hoping you had an ODE-solving pet monkey as the math and physics problem sets start piling up. Now, we do not offer ODE-solving primates at the moment, but we can help you with your differential equations problem sets. Wolfram|Alpha can solve a plethora of ODEs, each using multiple methods. More »

October 29, 2013– 1

We’re excited to introduce some brand new features to our step-by-step functionality! Wolfram|Alpha can now guide you through factoring polynomials and completing the square, in addition to being updated to include FOIL and the binomial expansion theorem. Let’s take a look. More »

February 13, 2013– 4

In our previous post about expanding Step-by-step solutions, we introduced a revamped equation solver. I’m proud to say that it has now been extended to solve systems of linear equations. In addition, you have four different methods to choose from when looking for a solution! These methods are elimination, substitution, Gaussian elimination, and Cramer’s rule. Let’s look at x + y = 5, xy = 1 to see all four methods in action. More »

January 28, 2013– 0

As a continuation of our new math content blog series, I’d like to talk about an exciting new Step-by-step feature. Previously I talked about differential equations, but today I’d like to look toward the other end of the spectrum: basic arithmetic. Wolfram|Alpha can now help you work out long addition, subtraction, multiplication, and division with hints and steps! Let’s go ahead and look at some examples. More »

January 30, 2012– 16

Wolfram|Alpha has become well-known for its ability to perform step-by-step math in a variety of areas. Today we’re pleased to introduce a new member to this family: step-by-step differential equations. Differential equations are fundamental to many fields, with applications such as describing spring-mass systems and circuits and modeling control systems.

From basic separable equations to solving with Laplace transforms, Wolfram|Alpha is a great way to guide yourself through a tough differential equation problem. Let’s take a look at some examples.

Wolfram|Alpha can show the steps to solve simple differential equations as well as slightly more complicated ones like this one:

Solve (x+1) y'(x) + y(x) = x More »